

Innovative methods in clinical hospital placements or clerkships for nursing and medical students –

a scoping review

OUH Odense University Hospital

Content

Introduction	3
Aims	
Method	6
Placement or Clerkship Models	8
Didactic Methods	10
Access to and use of technology during placements	10
Simulation	10
Integrating simulation into placement	
Preceptor and Learner	
Discussion	15
Conclusion and Recommendations	
Table 1 Placement and clerkship methods	
Table 2. Didactic Methods	
Table 3. Preceptors and Learners	
Reference List	

Review Authors

Thomas Brøcher Christophersen, SDU and OUH and Vibeke Damlund, SDU

January 2023

Introduction

"The times are a changing." The 20th century has seen an explosive development in medical diagnostics, treatment, and care. The incidence of a number of large "lifestyle" associated diseases, such as diabetes and coronary heart disease as well as cancer have increased. Likewise, the diversity, complexity, and subsequent effectiveness of treatments for these diseases are increasing, as well as the population's expectancy of access to these treatments. These facts, combined with other factors, have increased the life expectancy of the populations of European countries. As the general population is ageing, and surviving, the population of patients with one, two, or more, chronic conditions, requiring medical treatment, followup and care are likewise increasing. Unfortunately, so are the costs of treatments. For a number of years, economists, politicians, and healthcare professionals have noted that the increase in allocated resources have been insufficient to cover the increased demand, describing a gap between resources and needs. Invariably, this has led to a continuing process of reform and innovation in the way the healthcare systems are handling patient care. A general shift from admission in hospital wards towards more outpatient service clinics have been present for quite a number of years. More recently, a shift from face-to-face consultation towards increasing online or virtual consultations has begun, with the advent of reliable technological platforms for this method. This development is present both in the primary and secondary healthcare sectors.

The demographics of the healthcare workforce is also changing. Due to expected shortages in the workforce due to retirement and attrition, an increased uptake in healthcare students in schools, colleges and universities has been ongoing for some years. Also new professions have evolved. This increases the need for placements. For some years the demand for and availability of quality placement have been disproportionate. The number of students per clinical educator and institution is increasing. This has led some educators to look for alternative ways of maintaining adequate clinical education of healthcare students.

Generally speaking, the healthcare sector has three pillars of responsibility: The clinical diagnosis, treatment, and care of patients; the research of effective methods for diagnosis, treatment and care of patients; and the effective education of healthcare professionals to meet the needs and demands of the current and the future generations of patients.

This review is focused on the third pillar: the effective education of healthcare professionals. As the hospitals of the future are changing their methods and models of care for patients, this will invariably lead to a need for changing the methods and models of education of healthcare professionals. Healthcare professionals encompass a large number of professions involved in direct patient care, such as physicians, nurses and therapists, as well as a number of allied professions. However, the two primary groups directly involved in the diagnostic workup, the treatment, and the care of patients are the medical doctors and the nurses. Therefore, this review will focus on the hospitals' involvement in the education of nurses and doctors to meet the future needs and demands of the population.

Generally, the education of nurses and doctors can be divided into three periods: undergraduate; postgraduate; and continuous professional development. The undergraduate education is a combination of

academic theoretical education (college or university) combined with a number of placements or clerkships for practical education. The nomenclature of such placements, as well as the precise composition can change from country to country or between educational institutions. Also, the collaboration between individual academic institutions and clinical hospitals may vary greatly.

In the academic environment, the past 2 decades have seen the introduction of teaching and learning methods based on constructivist and more recently social learning theories, with the advent of problembased learning and small-group teaching with case-based learning, as well as training the positivist research philosophy, with the increasing focus on evidence-based medicine. Likewise, the assessment for learning has, in some places changed from traditional written and oral examinations to OSCE examinations.

In the clinical hospital environment, the learning is focused on workplace learning theories, like communities of practice (Wenger et al) and socio-cultural learning theories (Vygotsky), as well as skills training and mastery (Halstead; Peyton). However, given the short timeframe these methods may not be well suited to endow learners with more than a token familiarity with the daily clinical routine. A recent focus has been on the lack of real-world experience of newly graduated healthcare students and their risk of "practice shock" and poor integration into the postgraduate work environment. Recently this has led to explorations of new models of internships, like the "Longitudinal Integrated Clerkship" and the "Dedicated Education Units".

Aims

This review is a part of the "Internships in Future Hospital (HEAL)"-framework. The framework comprises representatives from healthcare professions educational institutions from five different EU countries. The overall aim of the HEAL-project is to develop and test an innovative framework for high quality internships of healthcare professionals for the future. As an initial part of this framework, the HEAL consortium partners formulated several questions for a review of the literature, in order to inform the subsequent development of innovative solutions suited for testing. The questions were as follows:

Question 1: What is already known about innovative learning methods, including current existing solutions?

Question 2: What seems to be important preconditions for successful internships?

Question 3: What innovative methods exist and have been used in health professions education and internships?

Question 4: What are the barriers and promoting factors for these innovative methods?

The scope of these questions was further elaborated on and delineated during a HEAL partnership meeting in May 2022. The partner group also discussed the scope and type of review, as well as potential methods of interest, informing the subsequent research question, review protocol and inclusion/exclusion criteria. Based on these deliberations the review group formulated the following research question:

What innovative methods in undergraduate healthcare professional hospital-based internships have been evaluated in the literature, including preconditions, promoting, and detracting factors?

As we sought to map a broad, emerging field of novel methods for change in medical education with a potential multitude of methods we decided that a traditional systematic review and meta-analysis was inappropriate at present (Munn, 2018). Arksey and O'Malley (2005) described an alternative type of review, the scoping review, suited for examining the extend and range of research and summarizing and disseminating research for policy makers, as well as identifying gaps in the literature ripe for future research. This initial framework has been refined a number of times (JBI Manual) and a reporting method has been developed (PRISMA-Scr). This framework forms the theoretical foundation for the method used in this scoping review.

The literature search, inclusion criteria and exclusion criteria were formulated on the basis of the *Population-Concept-Context* (PCC) Model (JBI Manual). Each item was informed by the initial foundation protocol and the partner workshop as presented below.

Population

There is a multitude of different healthcare professionals. Nurses of various educational levels and specialities, medical doctors, midwifes, dieticians, physiotherapists, physician assistants, and pharmacist, to name some professions. Furthermore, the education and professional responsibilities of may differ from country to country. Although most of the healthcare professions have some form of clinical education in hospitals and may have different takes on innovative approaches in relations to their placements, the two major groups involved in clinical education in hospitals are nurses and medical doctors. It is expected that the majority of the available research will be centred around these two professions. Thus, in order to focus the scope of the review we chose to limit the population to undergraduate nursing and medical students.

Concept

Defining innovative approaches can be difficult. Especially when looking at different educational and healthcare traditions. Innovation may be driven by evolving theory, new technologies or the needs of healthcare stakeholders. The method considered innovative or novel in one country, may be considered the norm in another. Therefore, we decided to limit the eligible literature to that produced by countries with similar educational, cultural, and healthcare traditions, namely the EU and Scandinavia, the UK, USA and Canada, and Australia and New Zealand. In the initial protocol for the HEAL framework a number of potential innovative methods were put forth for investigation. These were further elucidated at the partner meeting in May 2022. We also piloted an initial search in Pubmed, to scope what peers around the world considered to be innovative and included these methods in the final search. As the continuous, innovative development is ever evolving, we sought the most recent publications, limiting our search to articles published from 2012 and onwards.

Context

Practical education during workplace placements has a number of different names, across the different professions and countries and may be reported under different names, such as rotations, clerkships, placements, internships and apprenticeships. For this review we will be using the general term of placement. There is also an inconsistent reporting culture, as different authors may use the same name for both undergraduate and graduate education. For this scoping review we investigate the context of clinical,

workplace-based education in the undergraduate population. Thus, we do not consider the literature concerning post-graduate education or continuing professional development. Likewise, the focus of the HEAL framework is hospital placements. Thus, literature focused primarily on primary or community healthcare and placements in the primary sector were not eligible for this review.

Method

Development of the search

Following the partner meeting, the review group performed an initial search of the Open Science Framework (www.osf.io), The Cochrane Database (www.cochranelibrary.com), PROSPERO (www.crd.york.ac.uk), and Best Evidence Medical and Health Professional Education (bemecollaboration.org) for published protocols or completed systematic or scoping reviews of innovation in placements or clerkships in healthcare profession education. We found no scoping reviews were found with this focus for research.

Following this, and on the basis of the initial HEAL protocol, the input from the partnership meeting, and the *PCC* model, an initial search of Pubmed was performed in order to map potential keywords, Medical subheadings (MeSH terms), and novel methods to inform the final search. A research librarian from library of the University of Southern Denmark was consulted to optimize the final search. A final search was constructed by combining three search strings, each encompassing subheadings and free text search, using Boolian combination AND/OR. The specific keywords varied according to the definitions of the individual database. * and "" were used when relevant.

Search String 1: The education of undergraduate medical or nursing students.

Search String 2: Internships and potential synonyms.

Search String 3: Innovation, novel or methods considered to be innovative.

In August 2022 we queried five databases, Medline (Ovid), Embase (Ovid), Cumulative Index to Nursing and Allied Health Literature (Cinahl Complete, Ebsco), Education Resources Information Center (ERIC, Ebsco), and Scopus using the final combination search string. An example of the combined search for Medline can be seen in Appendix 1. The search was adapted to each database-specific search function. Medline and Embase used the same Medical Subheadings. CINAHL used Major Subheading and Subject terms. ERIC used a Thesaurus and Scopus did not use subheading, but only supported free text searching. The searches were only limited by language (English) and timeframe 2012-2022 (2021 for ERIC, as 2022 was not indexed at the time).

In addition to this database search, each HEAL partner institution separately searched their national and local databases for similar publications to be included in the reference screening process.

We did not search specific databases for grey literature, and we did not perform reference or citation searching.

References were uploaded to a dedicated online review resource, COVIDENCE (covidence.org, Melbourne, Australia), for further screening, review, and extraction of data.

Inclusion Criteria

Included in the review were papers, abstracts, or dissertations in English, presenting primary research of innovative methods involving clinical, hospital placements or clerkships for undergraduate nursing or medical students, from the year 2012 and onwards, within the defined geographical area. As such, quantitative, qualitative, and mixed methods studies were eligible for inclusion, spanning descriptive studies and experimental designs, if they presented evaluative data on novel methods. The geographical area included was EU and Scandinavia, UK, USA and Canada, Australia, and New Zealand.

Exclusion Criteria

The following exclusion criteria were used in each step of the screening process:

Non-English language publication

Outside specified geographical area

Not related to nursing or medical students

Not related to placements or clerkships

Not reporting on undergraduate education

Not hospital setting as a point of interest

Evaluation of current practice

Focus on assessment

Opinion papers, discussion papers, letters, books, or reviews, not presenting primary research

Reference screening, selection, and data extraction

The screening and selection process was conducted by two reviewers (TBC and VD). A total of 13,584 references were identified in the database search by the review team (No. 13,536 papers) and the collaborating partner (No. 48 papers). An automatic duplicate exclusion was performed by the COVIDENCE software, leaving 10,743 papers for screening. The titles and abstracts of these papers were separately screened by both reviewers for eligibility in accordance with the inclusion and exclusion criteria. Following exclusion, this left 179 papers for full text review. Following full-text review 74 papers were included in the scoping review. In all steps of the process, disagreements between the reviewers regarding inclusion and exclusion of references were solved through renewed review and discussion between the reviewers.

The 74 included papers were then reviewed by both authors and divided into three major themes: *Placement or Clerkship Models, Preceptors and Learners,* and *Didactic Methods*.

A novel data extraction tool was developed for each theme to present data most relevant for each theme and with a focus on what the paper presents, recommends and possible promoters and detractors in accordance with the research question and the original aims of informing the process of innovative creation in the HEAL-framework. Whenever possible we also included, at which Kirkpatrick level of evaluation (Kirkpatrick & Kirkpatrick, 2016) the data in the papers supported.

Results

A total of 74 papers were included in the scoping review. Their geographical representation and professional focus are displayed in Table 1. There was a stable number of articles per annum, between 4 and 8, with the year of 2021 as an outlier presenting 15 papers. This was probably due to an increased interest in technology enhanced solutions due to the COVID-19 pandemic. Only 20/74 articles originated within the EU and UK area.

Having reviewed the papers, the three major Themes emerged: *Placement or Clerkship Models; Didactic Methods,* and *Preceptor and Learner Theme*.

Papers included in the *Placement or Clerkship Models Theme* presented data on different placement models in undergraduate nursing and medical education. A large number of placement models exist around the world, based on tradition, academic-clinical institution partnerships, recommendations from governing bodies, and simple pragmatic reality. What may seem innovative in one setting can be seen as normal routine in another. Generally, the models are related to face-to-face clinical education, simulation clinical education, and virtual clinical education. Papers included in the *Didactic Methods Theme* primarily presented different technological methods for replacing or supplementing individual parts of a placement but did not seek to replace the placement itself. These methods included online lectures, simulations or skills training, virtual simulations, blended learning and more. The papers included in the *Preceptor and Learner Theme* primarily focused on factors within the learner and supervisor, such as method of learning, feedback, and collaboration. A majority of the articles on medical student clerkships were related to technological solutions, as didactic methods or as a clerkship model. The papers on nursing students were more evenly distributed between the three major themes.

Placement or Clerkship Models

Within the field of nursing education, a large number of models have been reported and reviewed. Traditionally, the reported model describes a faculty member as primary supervisor for a variable number of nursing students during their placements. Alternatives to this model may be one or more clinical preceptors supervising the students in different ratios 1:1, 1:2, 1: many. The level of collaboration between academic faculty and clinical preceptors may vary, favouring models of practice-education partnerships or dedicated educational units (DEU), where the students are primarily supervised by clinical preceptors in the wards, with support from academic faculty for the preceptors and students. This type of model has been researched a number of places in Australia, the US, the UK, and EU (Bittner, 2021; Clayes, 2015; Crawford, 2018; Hannon, 2012; Hendricks, 2015). Generally, the DEU models appear to receive good evaluations from students and faculty, but the Kirkpatrick level of review is primarily 1 (student feedback), and rarely 2 (change in knowledge, skills, or attitudes). Thus, we are unable to evaluate the model's impact on student behaviour or patient outcome. The DEU fosters the assimilation of students into active learner roles in the community of practice at the clinical wards.

Although the majority of learners prefer the DEU model, some identify more with the learning culture of the traditional models of placement (Clayes, 2015). However, the number of learning opportunities and

actually performing procedures are higher in the DEU models (Clayes, 2015), and they seem to support the development of critical thinking better (Bittner, 2021).

Several authors have noted that the frequent rotation of students between blocks may cause anxiety in students, require a significant amount of time to re-orient towards the new environment, as well as a significant effort to align students to new colleagues, preceptors, and patients, as well as IT support systems. Frequent transitions may be unproductive (Mulcock, 2019; Teherani, 2013). Therefore, a number of integrated models and continuity models have been explored (Boardman, 2019; Mulcock, 2019; Hauer, 2012; Shahi, 2015; Simpkins, 2019; Teherani, 2013). For nursing students an integrated model of a combination of part-time placements and part-time academic teaching over a longer placement time may improve work-life balance and better align and integrate theory and practice but may create discontinuous relations with colleagues and patients (Boardman, 2019). This type of model seems best suited for junior students in early placements (Rohatinsky, 2016). Returning to the same placement ward and preceptor seems to lower the anxiety levels of nursing students (Mulcock, 2019). Continuity models have been considered for medical students for many years, primarily in longitudinal integrated clerkships (LIC) in the primary sector, for creating long-term, high value continuous learning relationships with preceptors, patients, and community, across sectors, as well as for recruitment purposes. Variants of LIC have been examined in hospital setting and appear to foster more active learning, responsibility, and the ability to see more patients and perform more procedures, while not be detrimental to overall performance on knowledge assessments (Charak, 2020; Hauer, 2012; Shahi, 2015, Teherani, 2013).

In both professions, it was reported that the traditional models foster more passive learning roles, and the newer models foster more active, participatory learning roles (Hendricks, 2015; Hauer, 2012). Integrating the learners in the workplace team, where clinical experiential learning occurs, in more participatory roles and separating the students from classroom obligations was regarded positively (Costello, 2022) and allowing for student-led activities may increase the number of performed tasks (Sutkin, 2013). Integrating a team of mono-professional, or interprofessional, students into the wards, with responsibilities for a number of patients, fulfilling the normal roles of the workplace, also seems to be well received by some students, leading to increased performance, more collaboration, and better integration into the wards, but also less time for mono-professional task (Clayes, 2015; Brewer, 2013; Morphet, 2014).

The use of simulation, both High-fidelity (HFS), Low-fidelity (LFS), and Virtual (VS) simulations have been considered a potential replacement of parts of the clinical placements for some years. Simulation may serve as an adjunct to traditional clinical placements (reported under *Didactic Methods*), as a partial replacement of some of the placement time or as a full simulated placement in simulated wards or hospitals (Parker, 2018). In nursing education, a Delphi study from the UK found it feasible to replace 11-30% of placement time with simulations instead (Bridge, 2022). A number of studies have found that replacing part of the placement time with simulation time is well received (De Ponti, 2020; Williams, 2022), it may increase perceived or observed knowledge and skills, and meets the learners' needs (Fielder, 2015; Hamra, 2019; Leighton, 2021). Other studies have found no lasting difference in knowledge or skills between simulation placements and traditional placements (Oldenburg, 2013; Pépin, 2022; Veltri, 2014). Student consistently favour face-to-face simulations over virtual simulations, although virtual simulation may meet some learning needs (Leighton, 2021; Pépin, 2022). Another recurring concern was the cost of equipment, design, facilitator training, and maintaining the sites (De Ponti, 2020; Fielder, 2015; Parker, 2018).

Four studies reported on entirely virtual placements, implemented during COVID-19, due to social distancing restrictions. They employed a combination of synchronous and a-synchronous methods, such as

virtual cases, team-based learning, webinars, podcasts, virtual interaction with clinical practitioners, and access to online lectures and material. They found it possible to facilitate theoretical knowledge acquisition, but not practical skills acquisition. Potential detractors were the investment in time, technical difficulties, low attendance, social disturbances and, foremost, no immersive experiential learning (Ingleson, 2022; Redinger, 2020; Topor, 2021; Villa, 2021).

A summary of findings from the reviewed papers is found in Table 1.

Didactic Methods

Access to and use of technology during placements

The current and future learners are increasingly integrating technological resources into their learning strategies and most students currently own a smartphone, with easy access to apps, social media, and online resources. Other electronic devices available include small portable laptops and tablet, which may afford access to electronic health records. However, simply providing access to these resources, does not appear to facilitate their use in the student-patient encounter (Alegria, 2014; Clarke, 2019). A number of methods of providing learning have been employed, from text-messaging clinical pearls (Mandry, 2013), posting clinical pearls on Twitter (Reames, 2015), to designing podcasts (Augustin, 2021; Mookerji, 2020). Although well-liked by some students, these methods were simply not accessed by a large proportion of the students and did not improve the outcome of the placement.

A number of online learning modules has been studied, from simple text monographs to Powerpoint presentations, online video lectures, online digital games, and online virtual patients (Barisone, 2019; Cipriano, 2013; Khasawneh, 2016; Kim, 2018; Lindeman, 2015; Subramanian, 2013; Xiong, 2021). They are generally well received by students and preferred over textbook material and lectures. However, adding these resources does not appear to improve student knowledge when tested (Lindeman, 2015). Furthermore, a large proportion of students did not access the resources, if they were not mandatory (Khasawneh, 2016; Kim, 2018).

Acknowledging students' online connectivity, a number of studies have investigated the use of online solutions for clinical teaching. This was particularly fuelled by the COVID-19 pandemic lockdowns. Live-streamed ward rounds and teleconsultation using Microsoft Teams[™] and other solutions were feasible, and acceptable to patients, physicians, and student. However, students uniformly preferred face-to-face learning methods, as this affords greater interaction and opportunity for direct student-patient physical examination (Dykes, 2021; Feeley, 2021; Mill, 2021; Patterson, 2022).

Simulation

From the number of studies published within the last 10 years, it is obvious that *simulation* has the interest of many health educators and researchers. In our work with this scoping review articles on simulation are by far the majority. Simulation comes in several different forms. It may be Low-Fidelity or High-Fidelity,

Face-to-Face or Virtual, Individual or Team-based, Mono-professional or Interprofessional, Simple-task based, or Complex task based, Single-case oriented or Multi-case, Ward or Hospital oriented.

Simulation as a learning tool has been part of educational institutions within health studies for many years, as well as a postgraduate medical training opportunity (Tofil 2013). In recent years there is a growing interest in simulation as part of undergraduate clinical placement (Bridge 2022, Williams 2022) in order to provide training of specific specialities corresponding with students' actual placement. This growing interest only increased during COVID-19 lockdowns around the world.

Handling the COVID-19 pandemic made demands for thinking and acting differently when it came to clinical placements. The changed conditions led to a rise in teaching and learning possibilities that allowed students to stay isolated or only meet a few fellow students, hospital staff and faculty at low incident. To many educators, this had one obvious solution: simulation. Ajab et al. (2022) describe how they constructed a successful high-fidelity alternative to traditional bedside teaching for medical undergraduates during the pandemic in the UK. These alternative sessions proved very prosperous, and students are eager to make it a permanent possibility in connection with more clinical subjects. The main drawback was the resource intensity – financially and staff allocations (Ajab, 2022). Also, in the UK the complete lockdown afforded nurses the opportunity to experience a full-scale simulated placement. Williams et al. (2022) describe, how a blended experiential learning approach to a four-week placement proved:

"...... that this new type of flexible simulated placement has met student nurses' learning needs and prepared them for practice."

The developers found, that without the COVID-19 restrictions, a ratio of 50% face-to-face may be desirable.

In the US the COVID-19 lock-down restricted usual learning opportunities exept but individual work - i.e. screen-based simulation. Badowski et al. (2021) enquire into how nurse students perceive working with screen-based simulation during the lock-down compared to manikin simulation and traditional clinical experiences. They found, that if support and feedback are provided, students gain knowledge, skills, and confidence, and yet 'the clinical environment prevailed the golden standard' (Badowski, 2021).

Integrating simulation into placement

Regardless of current policies of restrictions to face-to-face education, educators and researchers experiment with adding simulation to traditional clinical placement in an attempt to improve learning opportunities to a growing mass of students.

One example is presented by Goolsby et al. (2014). In this study, a full day of hybrid simulation was offered during a four-week clinical placement. Students' confidence with procedural skills increased significantly. Likewise, Tofil et al. (2014) report increase in student learning of knowledge and skills when participating in one-hour high-fidelity sessions four times a week during their placement. In another study, Tofil et al. (2013) also report how competences such as communication and teamwork increase when employing interprofessional simulations in nursing and medical students. Fielder et al. (2015) report how a high ratio of students set off an initiative to integrate simulation-based education into traditional rotation; 19 hours in the clinic and 16 hours simulation. Simulation provided the opportunity to train procedural skills and

situations/patients that students rarely meet in an everyday placement setting. Likewise, Greenstone et al. (2021) present how simulating integrated psychiatry and physical topics for students to learn about the often complex, cases they will meet in e.g., emergency. Students found the high-fidelity simulation realistic and liked the individual feedback. The simulated exercises helped students become aware of and recall the complexities of real patients.

Jauregui et al. (2018) report on another simulation setting. They introduced a low-fidelity case-based peerassisted learning opportunity for students placed in emergency medicine. Students took turns leading the case-scenarios by use of tablets and experienced a safe learning environment. The method was a low-cost resource. Kwan et al. (2017) also reports on adding high-fidelity simulation to the internship curriculum. Simulation helped build students confidence in performing the tasks trained and was well liked by students. Wise et al. (2016) introduce a web-based simulation of a skill during placement. The resource was well liked, and could be accessed at ones' own time, but was poorly aligned to daily clinical placement learning.

Pros and cons and the ratio between simulation and clinical placement of the different formats are discussed in several articles. Bridge et al. (2022) reported that students find it acceptable if between 11% and 30% of clinical placement time is substituted by high fidelity simulation. Leighton et al (2021) refers to a much-cited article (Hayden, 2014) that if 50% of clinical placement time is substituted by high-fidelity simulation, there is:

"no statistically significant differences in clinical competency, comprehensive nursing knowledge, NCLEX pass rates, or readiness to practice"

Brien et al. (2017) found that when offering two hours of high-fidelity simulation (HFS) as part of clinical placement in a specific specialty:

"Both the HFS activities and the clinical settings were perceived to promote the development of clinical reasoning, to increase confidence, to help link the classroom content to real practice, and to practice clinical skills. However, both environments seemed to favour different aspects of learning related to clinical knowledge, a nurse's role, and personal learning."

Likewise, Brien (2022) directs our attention to the deficits of placements:

"However, given the shortage of staff, the increased complexity of care,

and shortcomings in terms of pedagogical strategies, some preceptors find it hard to provide students with proper guidance, especially in a critical care environment in which patients are unstable and vulnerable"

This as opposed to the planned debriefing sessions following a student targeted simulation session, where students have time to reflect and ask questions and thereby consolidate their learning experiences.

Leighton et al. (2021) compared traditional clinical placement to face-to-face simulation and screen-based simulation and found that screen-based was the less productive regarding nurse students learning. Mollo et al. (2012) account for a high-fidelity simulated ward as an ad on for training clerks in a patient safe environment:

"SIMFLO is the first reported in the medical literature to create a hospital ward populated by high-fidelity simulators to teach surgical clerks the basics of inpatient management of surgical patients and communication skills"

Students found simulation improved their understanding of medical management of surgical issues and their documentation skills. It also created wishes for more simulation scenarios.

Likewise, Parker et al. (2018) report, on an on campus simulated hospital to prepare nurses for placement not as a replacement for clinical experiences but as a preparation. The initiative improved students' readiness for practice.

A general question of importance for students' learning is the question of *transfer* (Parker 2018). Can students apply what they learn in the simulation unit when they are in the clinic? Nash (2017) turns our attention to the fact, that whether transfer is successful or not, partly depends on the similarities of learning- and application contexts; are the simulation conditions and clinical conditions alike. In their research Nash found that nursing students found it hard to use what was trained in simulation, as similar problems did not occur in the clinical setting, they were in. An idea is to do simulations after placement in order to train and refine what was encountered in the clinical.

A summary of findings from the reviewed papers can be found in Table 2.

Preceptor and Learner

The relationship between a student in clinical placement and the preceptor is regarded essential for the quality of placement (Ford 2016, Hart, 2019, Löfmark, 2012, McLeod, 2021). Many attempts to develop the best preceptor model have taken place, as the preceptor is important to help students socialize into workplace culture and develop professional and clinical expertise (Newton; 2012). McLeod (2021) described a model called Clinical School Supervision works (CSS). The purpose of the CSS model was to provide students with the continuity of both theoretical and clinical educational support from both academic staff and clinical preceptors, and the model builds on close collaboration between clinical preceptors and faculty. Theory was taught by faculty, and clinical skills by hospital clinic educational staff in a co-located purpose-built teaching and research precinct adjacent to the hospital.

"Supervision of students was conducted by hospital preceptors and both students and preceptors were supported by a clinical liaison nurse who was also an academic member of faculty."

Students found that being connected to the same preceptor continuously offers the opportunity of being directed towards appropriate learning opportunities. They felt welcome, encouraged, and supported. Preceptors reported their need to know, what expectations come with the role and, e.g., how to deal with poorly performing students – issues faculty need to address.

Newton et al. (2012) present a model where the same medical teacher follows students in their placements to ensure continuity as the placements take place in different hospital campuses. Also, in attempt of continuity preceptors and students have the same schedules. This allows for a student-centeredness that supports students learning. Experimenting with a consistent clinical tutor is also the theme of Tran et al. (2021). During the pandemic, students had their placement organised in groups with attached junior doctors meeting them every day. The clinical tutor made sure to personalize teaching and replicate clinical experiences through e.g., videos. Involving teaching fellows in students' placements is also reported by Chong et al. (2021). Fellows supervise students on specific specialities with positive outcome.

Biggs et al. (2018) also address the problem with discontinuity in ordinary block rotations where each medical student relates to up to 8 preceptors and the following dissatisfaction with lack of quality of learning. They experiment with sending students to the same location for two blocks and only relate to 1-3 preceptors. This means that relationships evolve, and preceptors can assess students more thoroughly. In this way they adapt one of the benefits of LICs without changing the full educational set-up.

In a study running over two years, Ford et al. (2016) researched what is important to students and supervising nurses. The feeling of being welcome and belonging is vital to the students. They appreciate being recognised as legitimate participants, being encouraged to work independently and the opportunity to combine theory and practice by support from the supervisor. On the other hand, the supervising nurses benefit from the students' questions and experience increased knowledge through their supervising role. However, they need more precise knowledge of student learning goals and needs for assessment. They also pointed out, how they expect students to look for learning opportunities and act as self-directed learners. On the contrary, students expect the supervisor to act as provider of learning possibilities. This may be something to determine, when preparing students for their placement.

"Meaningful learning occurs within environments that foster a culture of mutual respect, reciprocity and transparency of expectation. "

(Ford, 2016)

To strengthen nurses' placement, collaboration and communication is needed. Hart et al. (2019) piloted a virtual classroom to investigate, if online meetings between student, preceptor and faculty would have a positive influence on collaboration and communication. They used Blackboard Communicate, a learning management system, with features we have all been acquainted with since, due to covid. Students, preceptors, and faculty found several benefits to be pursued; online teaching/supervision is time efficient; travel costs are saved, it is more flexible to arrange meetings when needed, and opposed to telephone calls you have the benefit of the visual modality as well.

A Norwegian study by Löfmark, et al. (2012) inquired into nursing *students*' perceptions of the supervision they received from preceptors and university teachers. Both were rated highly; clinical nurses for their ability to help students apply theory on practice, teachers for assuring learning outcomes were reached. In the Norwegian programme student, preceptor and teacher met three times during the placement period of

eight weeks to ensure goals were met, and as a representative of the educational system, the teacher oversees assessing and grading the student. This model requires close communication between the professionals.

A summary of findings from the reviewed papers is presented in Table 3.

Discussion

The traditional models of organising placements in blocks with changing preceptors and other staff seem to have certain drawbacks regarding learning possibilities. Frequent rotations foster anxiety, lack of coherence and belonging, decreases psychological safety and frequently increases repetitive and unproductive time use on introduction, acclimatization, and assimilation into new learning environments. Students learn more efficiently in an inclusive, safe learning environment, feeling part of the community of practice (Lave and Wenger), afforded the opportunity to actively engage in clinical activities. This feeling of safety and belonging, fostering progressive, experiential, learning takes time and frequent environmental shift break up this stable environment. When students stay in the same place for longer periods of time (LICs) they have the opportunity to become familiar with every-day practices and develop a sense of belonging and identity as a professional. It is possible to progress from being a peripheral participant to a more or less full member of the practice community during the longitudinal placement. On the other hand, students may only be introduced to a limited number of different environments in few wards in single hospitals and are not introduced to the variety of clinical work environments and specialities.

When clinical placement is substituted by on-line and virtual practices students learn theoretical (declarative) knowledge but not procedural skills. It follows, that learning 'how' requires opportunities for hands on-experiences. Therefore, online substitutes should be tailored to teaching clinical knowledge, and, although initially labour-intensive, may in the long run free up time for clinical skills training, hands-on or through simulation, as well as free up time for preceptors and faculty for more bedside teaching. In comparing online and face-to-face experiences, reports indicate that some parts of clinical placements may be replaced by virtual learning methods and simulation without detrimental impact on knowledge on subsequent tests. However, students uniformly prefer face-to-face clinical learning to online or simulation alternatives. Furthermore, the methods have primarily been reported on a proof-of-concept level with feedback from students and staff at Kirkpatrick level 1.

Technology-enhanced learning has received great attention the past decade, with an explosion in methods and sources offered, such as text-messaging, podcasts, access to online libraries and knowledge resources, online videos, as well as games. Most of these are well received by those students who employ them, preferred over traditional lectures, but the offered resources are in reality only employed by a minority of students, especially in the clinical setting. There seems to be a multitude of resources, a lack of generic, relevance or quality control, as well as lack of guidance on what is relevant for each placement type. Furthermore, required resources seem to be accessed, but the utility of non-required resources is low. Online resources, if standardized and endorsed by experts and students, and tailored to the individual learning objective, may have the potential to increase the opportunities for learning during clinical placements, but there remains a significant task of sifting through the number sea of resources and guiding student, and teacher, in what is relevant and what is not. Though much used, simulation as a supplement to the clinical placement has advantages but is not without its problems. Simulation offers the opportunity to try out new or complex tasks, and employ previously obtained knowledge, in a safe environment, with minimal risk for the patient. Problems may be related to the alignment of the simulation, the actual acquisition of new knowledge and skill, the retaining of said skills, and the transfer of simulated skills to actual clinical patient-involving situations. Finally, simulation may be relatively resource-intensive and expensive in both financial costs as well as labour costs.

Simulation comes in many forms with many different learning objectives. These should be closely aligned with the actual need in the clinical environment. One strategy is to simulate common procedures, such as emergency response teams, resuscitation, and procedural skills. This may seem feasible, but a consideration should be how many repetitions are required for obtaining an acceptable competence, the timing of the simulations and the risk of skill decay. Another strategy is to simulate interesting, or relatively rare medical conditions to increase awareness of these. Since the simulation setting and practice are not identical, it can also be challenging to transfer what is learned in one setting into another. Real life is usually imminently more complex than a controlled simulated environment even when compared to high fidelity simulations.

Simulation may offer the opportunity of active learning. Friedman (Friedman 2017) studied the difference between students doing a traditional placement, where students watched staff perform and students doing simulations at a workplace in connection with the placement. Friedman found a significant impact on students test results, as students who merely watched performed poorer than those who had hands on the simulation station.

Advantages to simulations are the possibilities of repetition, patient safety, and the opportunity to direct the complexity of the simulation to the exact level of the individual student. A simulation can directly address relevant learning objectives and any possible mistakes may be corrected immediately. Debriefing allows students to verbalise what they have experienced and thereby construct knowledge that will be reaccessible and allow new experiences to relate to the established constructs.

Whether simulations are as effective as placement and to what degree placement can be substituted by simulations is a much-discussed topic. Comparing learning outcomes from clinical placement and simulation, Veltri (2014) finds the two modes equally effective. Oldenburg (2013) reports on substituting 1st semester nurse students' clinical placement with high-fidelity simulation and compares with students who do the traditional clinical placement. Initially the students having had the simulation experience feel more confident before entering their 2nd semester placement. This difference between the two groups is equalized after the 2nd placement.

Finally, there is no doubt that the relationship between student and preceptor is of greatest importance. When things work out between them, both parts gain. Being part of a working community of practice where questions and reflections are externalised and shared provides a solid basis for mutual learning. Students' placement also serves as continuous workplace learning for clinical staff - when it is successful. To obtain success it seems necessary, that staff feel well prepared. They need to know the level of the student, the requirements for assessment, and have time allocated. Staff should strive to make students feel as legitimate participants, allowing them to take responsibility according to the students' level. This is facilitated by continuity, when students return to the same preceptor or stay for a longer time. This facilitates an evolving professional relationship and identity formation, and the preceptor finds it much easier to assess the student.

Conclusion and Recommendations

Continuity and integration in placements are important, place in the placement site and in the professional preceptor-student relationship. This ensures a greater integration into the working community of practice, furthers the opportunities of learning during placement and affords higher efficiency when students do not have to start all over in the next placement. It also helps build new professional relations, psychological safety, mutual trust of a fair assessment, and the confidence to ask questions. Opportunities for active learning occur when students are recognised by staff and given independent tasks to perform and reflect upon. However, redesigning placement curriculum may be a significant task, with multiple, sometimes adversarial interests and recommendations and regulatory body requirements.

Awareness of the importance of well-educated/prepared clinical staff with teaching responsibilities, is crucial. Since clinical staff is of such great importance for students' learning experience, they should be well prepared and show interest in welcoming the students into their practises. Explaining and reasoning makes the clinical staff aware of their own knowledge and practises. Opportunities for reflections with others are a highway to awareness of knowledge, skills, and competences needed in a specific setting.

Technology enhanced learning sources, if properly aligned to the learning objectives, with relevant guidance from faculty, and follow-up on the actual usage, may offer the opportunity to free up faculty time for more bedside teaching. However, most studies in this area have solely reported data on feedback from students and faculty and not on actual effect on clinical practice.

Simulation offers a number of opportunities to support clinical learning, if properly aligned to the actual need, properly designed and followed up by actual clinical experience, in order to transfer and retain obtained skills. These solutions may be relatively financially costly, time-consuming, and labour-intensive, setting up and maintaining.

Refer	Cou	Profe	Desig	Mode	Aim	Outcom	Kirkp	Promot	Detracto	Recomme
ence	ntry	ssion	n			es	atrick Level	ers	rs	ndations
Bittne r, 2021	USA	Nursi ng stude nts	Quant itative	DEU vs. TCP	To assess whether a DEU improve d develop ment of critical thinking	The DEU supports develop ment of critical thinking. TCP does not increase overall critical thinking score.	2	None reporte d	None Reported	DEU increase critical thinking, which may facilitate a more seamless transition from school to practice
Board man, 2019	Aust ralia	Nursi ng stude nts	Qualit ative	ICLM	To assess qualitati ve feedbac k on the ICLM model	Learners reported the ICLM prepared them for practice, improve d work- life balance, felt part of the team, and the protract ed period provided time to integrate theory to practice and reflect on learning	1	Better work- life balance Better integra tion of theory and practic e Only one student per. precept or	Continuit y with patients and staff. Self- rostering may be problem atic	ICLM favourabl e to mental health clinical education

Table 1 Placement and clerkship methods

			A	TCT	-		4.2	-		-
Claey s, 2015	Belg ium	Nursi ng stude nts	Quant itative	TCP vs. DEU vs. WBL	To assess if there a differen ce in learning environ ment or learning perform ance betwee n the three models.	Learning culture was significa ntly better in TCP. Learning perform ance was best in the DEU and worst in the TCP models.	1, 2,	The role of a consist ent mentor is vital to learnin g environ ment and learnin g learnin g outcom e during a placem ent. The length of the placem ent is import ant.	The number of learners per placeme nt and mentor is too high.	To educate more clinical mentors. DEU and WPL should be considere d for final-year students.
Crawf ord, 2018	New Zeal and	Nursi ng stude nts	Mixed metho ds	DEU	Evaluati on by learners and unit and academi c staff of a pilot DEU	DEU rated positive by learners and staff.	1,	Suppor tive and flexible. Inclusiv e partner ship betwee n learner s, staff and supervi sing liaisons	roles and responsi bilities of different learners and staff.	Include and support learners and staff in the clinical units.
Hann on, 2012	USA	Nursi ng	Qualit ative	DEU	Evaluati on of learners	DEU was a positive	1,	Inclusiv e environ	Teaching of basic skills.	None.

		stude nts			and unit staff of a pilot DEU	experien ce for learners and Precepto rs		ment. Part of the commu nity of practic e. Good support from academ ic faculty.		
Hend ricks, 2015	USA	Nursi ng stude nts	Mixed metho ds	TCP vs. PEP vs. HLM	Evaluati on of three models by student s, precept ors and faculty	No differenc e in learning environ ment. DEU offered more practical skills opportu nities. No differenc e in test scores.	1, 2	None reporte d	A large proportio n of the learner's time was used as a passive observer.	Understa nding the value of observati on. Understa nding the role of practical skills learning opportuni ties.
Mulc ock, 2019	USA	Nursi ng stude nts	Quant itative	HBC M	Evaluati on of stress levels in three models by student s	Significa ntly lower stress levels in the HBCM model.	1,	Reduce d orienta tion time. Placem ent spot neutral.	None reported	Recurring placemen ts facilitates inclusion, mentorin g, and learner autonom y.
Rohat insky, 2016	Can ada	Nursi ng stude nts	Qualit ative data report ed	Block vs. Non- block mode I	Evaluati on of perceive d learning in block and non- block models	Qualitati ve positive feedback for both models.	1,	Non- Block: Concur rent theory and practic e, work- life	Student preferen ces: Non- block preferred by 1 st and 2 nd year students.	Both models have their place. Block model should be preferred for senior students.

								balance , variety of patient s, time for formati ve feedba ck and reflecti on. Block: Focus on clinical learnin g, Frontlo ading theory, continu ity of patient care, clinical judgme nt.	Block preferred by senior students.	
Chara k, 2020	USA	Medi cal stude nts	Mixed Meth ods	LIC vs. Block mode I	To evaluat e a LIC	LIC students had greater surgical test scores, but scored the same in clinical skills tests. LIC students had more direct interacti on with attendin	2	None reporte d	None reported	LIC is non- inferior to Block. May increase surgical knowledg e and interest in surgical career.

						gs and perioper ative contact with patients. LIC students were less likely to rule out a future surgical career.				
Costel lo, 2022	Irela nd	Medi cal stude nts	Qualit ative	Exper ience based Learni ng	Post- hoc evaluati on of experie nce based learning model	Positive experien ce to be part of the team and not just observer s.	1	The focus exclusiv ely on clinical work. Simulat ion and case- based learnin g as prepara tory and supple mental learnin g method s.	Less opportun ity for direct observati on by precepto rs	Active participati on promotes learning. Seperatio n of classroom and clinical time is helpful.
Hauer , 2012	USA	Medi cal stude nts	Qualit ative	LIC vs. Block mode I	To compar e patient care roles and activitie s of student s in LIC and	LIC facilitate s workplac e learning, a feeling of inclusion in the patient care and authenti	1,	Continu ity with patient s, precept ors and site promot es authen tic doctor-	None reported	LIC model provides better and more patient- centred learning opportuni ties.

Shahi, 2015	Aust ralia	Medi cal	Mixed metho	LIC vs.	Block models To explore	c doctor- like roles. Block rotation favors more passive roles. LIC > Hybrid > Dlock in	1, 2	like roles Active particip	Passive observati	Longer duration,
		stude nts	d	Hybri d vs. Block mode I	and compar e three differen t models of placeme nt	Block in number of patient encount ers, histories and physical examinat ions. Hybrid>B lock>LIC in number of procedur es.		ation in the LIC and Hybrid models Opport unities for interact ion. Smaller , friendli er environ ment.	on in the tradition al model. Discontin uity in relations hip building in block rotations	communi ty settings may provide effective alternativ e placemen ts
Simpk in, 2019	UK	Medi cal stude nts	Qualit ative	Hybri d mode l	To explore the effect of a new model on student s attitude s and experie nces	The students felt they develope d in the themes of the patient journey, the healthca re system, their learning pathway and their professio nal	1	Student - centere d educati on in patient - centere d healthc are. Self- directe d learnin g. Better prepar ed to	Concerns about how they will do on exams. Concerns on costs and organizat ional time due to complex schedulin g.	Design curricula that embraces a symbiotic relationsh ip of patient and student needs.

						develop ment		be doctors		
Sutki n, 2013	USA	Medi cal stude nts	Quant itative	Stude nt-led clinic vs. Resid ent- led clinic	To compar e student s' experie nce in 2 models of outpatie nt	A student led clinic led to fewer patient encount ers, but a higher number of clinical examinat ions. Precepto rs were rated higher in the student- led clinic.	1, 2	No compet ition betwee n residen ts and student s for proced ures in the student -led clinic.	The cost of the time of the attending The loss of opportun ities for the residents to teach students.	Involve students in active learning.
Teher ani, 2013	USA	Medi cal stude nts	Mixed metho ds	LIC vs. Hybri d vs. Block mode I	To compar e student s perspec tives and outcom e from three models of placeme nts	Continuit y models (LIC and Hybrid) had better evaluatio ns than block and scored better for positive role modellin g. LIC students were significa ntly better in data-	1, 2, 3	Continu ity facilitat es a sense of belongi ng and increas ed respons ibility, positive role modelli ng, and affects learnin g outcom es.	None reported	Continuit y increase education al outcomes . Students should be able to choose between models.

Brew	Aust	Medi	Mixed	IPE	Evaluati	gatherin g, but there was no differenc e in marks, clinical knowled ge or skills. Increase	1, 3,	Unders	Less time	Collabora
er, 2013	ralia	cal and nursi ng stude nts	metho d	Traini ng Ward	on of a pilot IPE ward	d collabora tion and understa nding of the whole patient journey, and the roles of other professio ns.	4	tanding for differe nt profess ional roles. Positive feedba ck from patient s.	with monopro fessional tasks. Longer hours.	tion between key stakehold ers are important
Morp het, 2014	Aust ralia	Medi cal stude nts	Mixed metho d	IPE Traini ng Ward	Student evaluati on of 2 pilot IPE wards	Positive feedback Increase d autonom y, understa nding of other professio nal roles, facilitate d positive commun ication, collabora tion, and belongin g to the unit.	1,	Inclusio n in the clinical team	Less time with monopro fessional tasks.	IPE to address teamwor k education

	1.112	NI	Dalati		Ta	•	NI - 1	Tast	Net 1	Det
Bridg e, 2022	UK	Nursi ng stude nts	Delphi study	Partia I place ment with simul ation	To identify how much of clinical placeme nt time could be replace d by simulati on	A consens us of the amount of placeme nt time was presente d, as well as promote rs and potential problem s.	Not appli cable	Trainin g in core skills in patient risk- free environ ment. Reduce d burden of clinical presenc e in the wards. May increas e the numbe r of placem ents availabl e	Not all placeme nt tasks suitable for simulatio n. Logistical challenge s in designing and facilitatin g simulatio n. Not reality. No Iways accepted by regulator y authoriti es.	Between 10-30% of placemen t time can be replaced by simulatio n.
De Ponti, 2020	Italy	Medi cal stude nts	Quant itative	Virtua I simul ation	To evaluat e a complet e virtual placeme nt during COVID- 19	Positive evaluatio ns with regards to format and realistic presenta tion.	1,	Preferr ed over traditio nal classro om lecture s	28% had technical difficultie s accessing the platform. Nobody recomme nded it as a stand- alone instead of tradition al placeme nt.	Virtual simulatio n may be a future add-on to normal clinical education
Fielde r, 2015	USA	Medi cal stude nts	Quant itative	Partia I place ment	To evaluat e an implem	Simulati on improve d some	1,	Increas es the numbe r of	Initial cost of equipme nt,	Simulatio n can ameliorat e the high

				with simul ation	entation of partial simulati on placeme nt	aspects of comfort with medical manage ment, skills and increase d knowled ge.		student placem ents.	design and facilitatio n of simulatio n	ration of learner to faculty, limited supervisio n, and variety of presentin g patients.
Hamr a, 2019	USA	Nursi ng stude nts	Mixed metho d.	Simul ation place ment vs. Tradit ional place ment	To compar e the learning experie nce of student in simulati on and traditio nal clinical placeme nt	Simulati on based placeme nt was superior to tradition al placeme nts in adult learning tasks, and experien tial learning	1, 2	May replace placem ents, when sites are unavai ble	Not always recognize d by future employer s	Simulatio n is a valid and effective form of nursing placemen t.
Leight on, 2021	USA	Nursi ng stude nts	Quant itative	Tradit ional place ment vs. Face- to- Face simul ation vs. Virtua I simul ation	To evaluat e how well student s perceive d their learning need were met in traditio nal placeme nts, Face-to- Face simulati ons and	Tradition al clinical educatio n was perceive d to be better than Face-to- Face simulatio ns which were better than screen- based simulatio n.	1,	None reporte d	Speed of conversio n to screen- based simulatio n due to COVID- 19	Screen- based simulatio n should be well planned, better aligned with student needs and tested before implemen tation.

Olden burg, 2013	USA	Nursi ng stude nts	Quant itave	Tradit ional vs. Simul ation place ment	Screen- based simulati ons. Evaluati on of immedi ate and long- term self- reporte d clinical compet ence in traditio nal and simulate d placeme nts	Simulati on students reported immedia te greater clinical compete nce which levelled out following a subsequ ent clinical placeme nt. Both groups improve d their confiden ce from 1. To second placeme nt. Students	1,	Simulat ion improv es confide nce in inexper ienced nursing student s. May replace placem ent needs	No long- term differenc e between groups.	Should be studied further.
2018	Aust ralia	ng stude nts	Quant itative	ated Hospi tal	and stakehol der evaluati on of an entire Simulati on- based Hospital on Campus	felt the simulatio n hospital offered hands- on realistic experien ce. Stakehol ders were mostly satisfied,	1, 3,	increas es confide nce	establish, to develop authentic simulatio ns and to maintain educatio n of staff.	n may improve the prepared ness of students for clinical placemen ts

Pépin , 2022	Can ada	Nursi ng stude nts	Quant itative	Simul ated vs. Clinic al place ment	An evaluati on of 2 days of simulati on vs. 10 days clinical placeme nt	that students were ready for clinical work. No differenc e in knowled ge acquisiti on, or satisfacti on, or satisfacti on. Clinical placeme nt students perceive d greater self- confiden ce and support from precepto r.	1, 2	Self- allocate d placem ent type	None reported	Shorter simulatio n periods may provide the same knowledg e acquisitio n and perceived satisfactio n.
Veltri, 2014	USA	Nursi ng stude nts	Quant itative	Simul ated vs. Clinic al place ment	Compari son of skills in 2 placeme nt groups. Clinical placeme nt in obstetri cs and clinical placeme nt in pediatri cs with obstetri c simulati ons	No differenc e in skill assessm ent by faculty observer	2	None reporte d	None reported	Simulatio n is as effective as clinical placemen ts in skills performa nce outcome.

Willia ms, 2022	UK	Nursi ng stude nts	Mixed metho d	Simul ated virtua l place ment	Evaluate the creation of a Virtual placeme nt due to COVID- 19, includin g simulati on, blended learning and online patient encount er (virtual consults)	Positive evaluatio n by close to 100% of students.	1	Virtual simulat ion and blende d learnin g may amelior ate the need for more traditio nal placem ents due to increasi ng numbe r of student s.	Very time consumi ng in administr ating, tracking student schedule s and queries.	Incorpora te both virtual and Face- to-Face simulatio n.
Ingles on, 2022	UK	Nursi ng stude nts	Qualit ative	Virtua I place ment	Evaluate a pilot blended , virtual placeme nt	Positive evaluatio n from supervis or. Students did not feel they had the same opportu nities as face-to- face placeme nts.	1	None reporte d	Scheduli ng and time for self- directed learning were difficult.	Should be planned and reflect the learning need and styles of the learners.
Redin ger, 2020	USA	Medi cal stude nts	Mixed metho d	Virtua l place ment	Evaluate a virtual placeme nt, institute d due to COVID- 19	No differenc e in knowled ge acquisiti on scores compare	1, 2	Choosi ng online method s is well- receive d, as oppose	No immersiv e experient ial learning. No direct patient contact.	May replace some parts of a placemen t.

						d to previous placeme nts. Concerns about skills training.		d to self- selecte d sources	No skills training. Low participat ion during live sessions. Family disturban ces. No video feed from participa nts.	
Topor , 2021	USA	Medi cal stude nts	Quant itative	Virtua I place ment s	To assess the knowled ge of student s in a virtual placeme nt compar ed to previou s face- to-face placeme nts	Students improve d their knowled ge. Non- inferior to previous face-to- face placeme nt students.	1, 2	None reporte d	None reported	Further validation needed
Villa, 2021	USA	Medi cal stude nts	Mixed metho d	Virtua l place ment s	Evaluati on of progra m and assessm ent of student knowled ge.	Postitive feedback from students. Modest improve ment in student knowled ge in Emergen cy medicine	1, 2	Possibl e to attend over long distanc es.	Very time- consumi ng in impleme ntation. Approxi mately 40 hours/st udent, not including develop ment and design.	Virtual placemen t may be valuable as an adjunct to face-to- face placemen ts in the future.

Refere nce	Cou ntry	Profe ssion	Design	Model	Aim	Outcome s	Kirkp atrick Level	Promote rs	Detract ors	Recomme ndations
Ajab, 2022	UK	Medi cal stude nts	Quanti tative	F2F-HFS Pilot	To evaluate students feedback from 2 scenarios instead of bedside teaching during COVID- 19	Students had a positive experienc e and felt confident in their clinical examinati on skills.	1		High cost in develo pment and Ressou rce intensi ve up- keep	Simulation may be a useful adjunct, especially when bedside teaching is unavailabl e.
Badow ski, 2021	USA	Nursi ng stude nts	Quanti tative	VS, Manikin- based simulatio n and TCE	To evaluate students perceptio ns of how well 3 methods met their learning needs	TCE met all learning needs. VS met 4 domains of learning needs and Manikin- based simulatio n met 2 learning needs.	1			Simulation may meet some of the nursing students learning need. VS more than Manikin- based. TCE remains the gold standard.
Brien, 2017	Can ada	Nursi ng stude nts	Qualit ative	HFS replacing 2 days during clinical placemen t	To evaluate how HFS and clinical days impacted nursing students learning	HFS and TCE both impacted student learning. HFS provided more opportun ity to do- but less realistical ly, less stress. TCE was	1			HFS may suppleme nt TCE and allow for training leadership , collaborati on and communic ation in low stress environm ent.

Table 2. Didactic Methods

						more passive observer, but realistic and more stress.				
Friedm an, 2016	USA	Medi cal stude nts	Quanti tative	Virtual simulatio n cases in radiology as an add-on to normal TCE	To evaluate student perceptio ns of simulator and knowled ge scores	Students had positive feedback of the simulator . Scored better in tests of the covered area, but not on the general tests.	1, 2	May increase the use of additiona I online ressourc es. Engage students in self- directed learning.	The cost in manpo wer of establis hing the virtual case scenari os	The inclusion of virtual simulation may promote active, self- directed learning.
Goolsb y, 2014	USA	Medi cal stude nts	Quanti tative	HFS, LFS and standardi zed patients	To evaluate the increase in student confiden ce in procedur al skills in emergen cy medicine by adding 1 day of simulatio n to placeme nt	Student confidenc e in procedur al skills increased and stayed elevated for 3 weeks.	1			Simulation can increase student procedura l confidenc e
Greens tone, 2021	UK	Medi cal stude nts	Qualit ative	HFS	To evaluate feedback from students on 1 day of HFS during placeme nt	Positive feedback.	1		Exam vs. real life	

Jaureg	USA	Medi	Qualit	Peer-	То	High	1	Peer-		
ui, 2017		cal stude nts	ative	assisted virtual cases with LFS	evaluate student feedback from 5 virtual cases/LFS during emergen	satisfacti on. Especially the peer- assisted format was better		assisted learning promote s active learning. Sessions were mandato		
					cy medicine placeme nt	than normal simulatio ns		ry.		
Kwan, 2017	USA	Medi cal stude nts	Quanti tative	HFS	To evaluate student reported confiden ce and feedback on a 2- hour HFS session	Positive feedback on course. Increased student confidenc e in the procedur es.	1		High cost of equipm ent and mainte nance.	
Mollo, 2012	USA	Medi cal stude nts	Quanti tative	Simulate d ward using HFS	To evaluate student feedback	Students reported increased understa nding of medical managem ent and documen tation. Most felt it was not life-like.	1	A simulate d ward may accomm odate a larger number of student	Requir es a signific ant on- site attend ance of faculty, trainin g and equipm ent invest ment.	
Nash, 2017	Aust ralia	Nursi ng stude nts	Qualit ative	HFS	To evaluate how previous HFS transferr ed into placeme nt tasks	Students did not apply the simulatio n learning during clinical placemen ts. Not relevant for their clinical placemen t. Low transfer	1			Timing and curriculu m during HFS and clinical placement s should be better aligned.

						of learning.				
Sansea u, 2020	USA	Medi cal stude nts	Quanti tative	Virtual simulatio n via teleconfe rencing.	To evaluate student and faculty use of 21 free virtual simulatio n cases	Mostly positive feedback. Users found the format feasible and acceptabl e. Best for communi cation and knowledg e skill. Less so for procedur al skills.	1	Low cost	May include too many particip ants	
Tofil, 2013	USA	Medi cal stude nts	Quanti tative	HFS simulatio n	To evaluate student perceive d effect of adding 4 HFS scenarios during clinical placeme nt	Students perceived improved knowledg e and skill, but not attitudes.	1			
Tofil, 2014	USA	Medi cal and nursi ng stude nts	Quanti tative	HFS simulatio n	To evaluate student perceive d effect of 4 HFS interprof essional scenarios during placeme nt	Students felt the HFS was helpful and increased knowledg e. Perceived an increase in self- efficacy communi cation and interprof essional understa nding	1	Compuls ory part of the curriculu m		

Wise, 2014	USA	Medi cal stude nt	Quanti tative	VS	To assess student usage and evaluatio n of a voluntary VS during placeme nt	The VS was well liked, and mostly accessed once for between 10-30 minutes. Usually after hours from 5 PM and onwards.	1	Can be accessed at a choosing of one's own time.	Not well aligned to the clinical placem ent learnin g
Dykes, 2021	UK	Medi cal stude nts	Mixed metho ds	Online ward rounds via Microsoft Teams™	To evaluate the perceptio ns of online ward rounds for students, faculty and patients	No concerns raised by patients/f amily or faculty. Students found the sessions improved approach to history taking, and critical reasoning skills	1,	More students can benefit from a single patient encounte r	Some may have technic al proble ms.
Feeley, 2021	Irela nd	Medi cal stude nts	Mixed metho d	Online or F2F, bedside teaching in surgical patients	To evaluate the students' acceptan ce of tele- bedside tutorials	Students in F2F group had significan tly greater perceived learning, engagem ent, satisfacti on and involvem ent. Telesoluti on may be useful if F2F not possible.	1	Ability to refer to online material and tutorial simultan eously. F2F were prolonge d and may result in attention problems	Techni cal proble ms with audio and visual quality and stabilit y of interne t covera ge.
N 4:11	UK	Medi	Quanti	Live	То	Well	1	Scalabilit	Techno
Mill,	1			streamed	evaluate	received	1	y to	logical

	1						1		1	· · · · · · · · · · · · · · · · · · ·
		stude		ward	the	by		larger	limitati	
		nts		rounds	students,	students,		number	ons	
					faculty	however		of online	regardi	
					and	lacked		student	ng	
					patients	interactio		participa	ambien	
					feedback	n and		nts	t audio	
								iits		
					on tele	possible			noise	
					ward	technical			and	
					rounds	issues,			interne	
						less well			t	
						evaluated			covera	
						by faculty			ge	
						with			-	
						more				
						technical				
						issues.				
						Well				
						received				
						by				
						patients.				
Patters	UK	Medi	Mixed	Telecons	Students	Students	1	Learning	Techni	Medical
on,		cal		ultations	feedback	preferred		needs	cal	students
2022		stude			on	F2F		can be	proble	need to
		nts			telecons	consultati		met by	ms.	be
					ultations	ons,		both F2F		educated
						followed		and		in the
						by		telecons		online
						teleconsu		ultations		consultati
						Itations		ultations		
										on
						with				technique
						attending				s.
						physically				
						present,				
						followed				
						by				
						teleconsu				
						Itations				
						with				
						attending				
						online,				
						and least				
						preferred				
						were				
						telephon				
						e				
						consults.				
						All forms				
						of				
						consults				
						had				
						learning				
						value. No				
						physical				
			1	1			1		1	
						examinati				

Safdieh , 2021	US	Medi cal stude nts	Quanti tative	Evaluatio n of several different supportiv e telehealt h roles for students during COVID-19	To evaluate the student experien ce of several telehealt h initiative s	on possible in teleconsu Itations. Well received by students. Cannot replace F2F clinical learning.	1, 2			Need to educate students in telehealth methods.
Stenbe rg, 2015	Swe den	Nursi ng stude nts	Mixed metho ds	Peer Learning model	Evaluatio n of students' perceptio ns of peer learning during placeme nts	Positive evaluatio n of peer learning. Created a feeling of safety, increased the learning experienc e, but also created a sense of competiti on for preceptor attention. More so in the more junior students	1	Safety in numbers	Risk of compet ition.	None presented
Watt, 2016	Aust ralia	Nursi ng stude nts	Quanti tative	Three day introduct ion program prior to placemen t	To evaluate the effect on anxiety and self- effiacy of nursing students during their placeme nt	Anxiety decrease s following the introducti on program and the subseque nt placemen t and self-	2	None reported	None reporte d	None reported.

						efficacy increases				
Alegria, 2014	USA	Medi cal stude nts	Qualit ative	Supplying a tablet during placemen t with access to electroni c health records, supportiv e software for learning and more.	To describe how student employ tablets during placeme nt	Students did not use the tablet bedside and did not feel they added to their clinical workflow Students used it to access reference learning material, often tailored to themselv es. Better than smartpho nes, but pc preferred	1	Accessibi lity.	Issues of size, use of virtual keyboa rds cost, and risk of theft.	May enhance access to self- regulated learning opportuni ties. Less useful for clinical workflow. May improve with technolog y.
Clarke, 2019	Irela nd	Medi cal stude nts	Qualit ative	Supplying either a MacBook Air or an Ipad for students during placemen ts	To evaluate medical students' preferen ces and usage of 2 devices.	88% preferred MacBook Air – but did not use it in front of patients. Only half of students with Ipads used them in front of patients, and only 15% found them helpful	1	Students are continuo usly connecte d to the web using a variety of devices.	Hesitan cy about using the devices in front of patient s and staff.	None reported.

						with patients				
Mandr y, 2013	USA	Medi cal Stude nts	Quanti tative	Sending emergen cy medicine pearl via text messagin g during placemen ts	To evaluate if the method increases medical students' test scores following placeme nt	There was no differenc e in test scores immediat ely following placemen t compare d to group without text messagin g	2	Easy to develop and administ er.	None reporte d	None reported
Reame s, 2015	USA	Medi cal Stude nts	Mixed	Posting surgical facts on Twitter account during placemen t	To evaluate if the use of Twitter enhance d the educatio nal experien ce.	There was no differenc e in post placemen t test scores. Relatively few used it regularly. The students did not feel it increased their engagem ent.	1, 2	Enhances connecti vity and learning on the move	No recipro cal engage ment in this study.	None reported
Subra manian , 2013	USA	Medi cal Stude nts	Mixed	Utilizing digital games based learning modules and additiona I reading lists during surgery placemen t	To evaluate if the modules were utilized and affected test scores post placeme nt.	Students found the modules effective. A large proportio n did not use the resource or found the options for learning to	1, 2	None reported	Compe tition from a numbe r of other digital learnin g sources . A signific ant propor tion of studen	To optimize placement of modules to avoid competiti on from other sources.

						numerou s. There were no differenc e in test scores of students using the modules.			ts were not cogniza nt of the module s.	
Augusti n, 2021	USA	Medi cal stude nts	Mixed	Podcast versus online modules on clinical reasoning	To evaluate the perceptio n and impact of podcasts on clinical reasonin g	Student liked the podcasts and felt they increased their skills in clinical reasoning . No differenc e were found on actual clinical reasoning in written assessme nts	1, 2	None reported	None reporte d	Podcast seem viable and were well received.
Barison e, 2019	Italy	Nursi ng stude nts	Qualit ative	Online videos as add-on to tradition al skills learning	To explore the perceptio n and effective ness of the web- based course	Student felt the videos were effective and could improve healthcar e outcomes	1	May make skills applicati on more uniform.	A confusi ng multitu de of videos availabl e online.	Online videos may be a useful add-on to traditional skills lab training.
Ciprian o, 2013	USA	Medi cal stude nts	Quanti tative	Online teaching modules as add-on during placemen t	To assess the impact of online teaching modules during placeme nt	Students felt the modules were worth their time, as good as clinical time, better than textbooks	1, 2	Many short modules, created by a national body.	None reporte d.	Modules should be easy to access and use, be standardiz ed and be able to be integrated into different settings.

						and lectures.				
Khasaw neh, 2016	USA	Medi cal stude nts	Quanti tative	Three different types of online learning resources	To assess the use of, student perceptio n of, and effect of online resource s on knowled ge test scores	Online modules were only accessed by 67% of students during placemen ts. They did not improve test scores. Students preferred power point to text monogra ph.	1, 2	None reported	Not all studen ts access non- manda tory educati onal module s	Modules were satisfactor y to student and in some cases increased confidenc e in subject, but did not improve test scores.
Kim, 2018	USA	Medi cal stude nts	Mixed metho ds	Required or self- directed use of virtual patient cases	To explore the use and benefit of virtual patient cases	The group with required virtual patient cases complete d more cases, but did not obtain greater scores on knowledg e tests.	1, 2	None reported	None reporte d	Adding virtual patient cases do not increase test scores. Self- directed use of virtual patient cases are sub- optimal.
Lindem an, 2015	USA	Medi cal stude nts	Quanti tative	Lectures or online blended learning during placemen ts	To explore the impact of introduci ng online blended learning modules to replace F2F lectures during placeme nts on	The group with blended learning modules did not achieve greater test results, but rated the learning experienc e greater	1, 2	May reduce the human resource s involved in lectures.	None reporte d	Blended learning may be an efficient learning strategy during placement s.

					academic test scores	than the lecture group.				
Mooke rji, 2020	Can ada	Medi cal stude nts	Quanti tative	Video podcasts during placemen ts	To test the efficacy of video podcasts during surgery placeme nts	The podcasts were well rated by the users and increased scores in a pre- test/post- test design. Podcasts were only used by 54 out of 161 students.	1, 2	None reported	Was only used by a third of the studen ts	Video podcasts are an efficient learning tool and preferred over traditional modalities
Xiong, 2021	USA	Medi cal stude nts	Mixed	Introduci ng a "flipped" placemen t to ameliorat e COVID- 19 restrictio ns	To see if introduci ng virtual teaching during COVID- 19 and shortenin g the in- patient care activities impacted on knowled ge and student ratings.	There was no differenc e in student ratings of placemen ts or test results between the two models.	1, 2	None reported	None reporte d	It is possible to convert F2F teaching during placement s to virtual "flipped" classes.

Referen ce	Countr Y	Professi on	Design	Model	Aim	Outcome	Kirkpatri ck Level	Promoter s	Detract ors	Recommendat ions
Biggs, 2018	USA	Medical student s	Mixed methods	Students assigned to either 1-3 primary preceptors or 5-8 general preceptors	To investigat e if preceptor continuity affected student feedback and outcome during placemen t	Continuity students received more feedback and preferred the continuity model. There were no difference in test scores.	1, 2	More progressiv e formative feedback. Relation building.	May decreas e the variety of patient cases and input from precept or. Logistics are more complex	The model is recommended by students and faculty.
Chong, 2021	UK	Medical student s	Mixed method	Implementa tion of teaching fellows	To evaluate student perceptio n of a teaching fellow program	The teaching fellow program was rated excellent by the students.	1	None reported	None reporte d	None reported
Edafe, 2016	UK	Medical student S	Qualitativ e	The feedback, activity, individuality, and relevance (FAIR) model	To examine how the model affected students' experienc e of learning during clinical placemen t	Feedback was generally positive or trended towards positive	1	Save environm ent for feedback	Time intensiv e for tutors.	The model could improve clinical teaching.
Ford, 2016	Austra lia	Nursing student S	Mixed methods	Survey of nursing program	To evaluate and improve nursing placemen ts with feedback from students and preceptor s	Feedback from students and preceptor s were generally positive. Thre themes were identied as	1	None reported	None reporte d	None Reported

Table 3. Preceptors and Learners

						important: Welcome and belonging, Competen ce and confidenc e, and Support to meet education al needs				
Hart, 2019	UK	Nursing student S	Qualitativ e	Pilot study of 8 students and their preceptors. Focus group evaluation of an online model for higher education institution lecturer support during placement	To obtain qualitativ e feedback on practical issues related to online support.	The participan t found the technolog y easy to use, time- efficient and afforded flexibility. Could not replace F2F meeting when expressed necessary by student or preceptor.	1	Saves travel time for lecturers. Flexibility in planning sessions.	Technic al glitches. Outdate d equipm ent and lack of office space for online meeting S.	Online student support may be more time efficient, but cannot always replace F2F meeting.
Lofmark , 2012	Norwa y	Nursing student s	Quantitat ive	Survey study of supervision from preceptors and teachers following placements	To evaluate students perceptio ns of the supervisio n from preceptor and teachers following placemen t.	Supervisio n from both teachers and preceptor were rated highly and was related to learning outcomes	1	None reported	None reporte d	None reported
McLeod , 2021	Austra lia	Nursing student S	Qualitativ e	Survey of nursing and midwifery students and their preceptors following placements with a clinical school supervision model.	To evaluate students and preceptor s' perceptio ns of the model.	The model enhanced learning opportunit ies through reflection and students felt they received the best of both academic and clinical worlds.	1	None reported	None reporte d	Education and academic support for preceptors is important
Newton , 2012	Austra lia	Nursing student s	Mixed methods	Survey of nursing students comparing 3 placement	To evaluate students perceptio n on the	The preceptor partnershi p model enhanced	1	Consistan cy vs. frequent shifts	None reporte d	Consistancy and student- centredness is important for

				models (2 traditional and a partnership model)	learning environm ent	student centredne ss, but not other themes of the learning environme nt.				the learning environment.
Tran, 2021	UK	Medical student	Quantitat ive	Introduction of a near- peer consistent clinical tutor during placement	Pilot evaluatio n of a junior physician tutor during placemen t by students and tutors	The clinical tutor program was well received by a majority	1	None reported	May not be practical due to normal clinical duties.	None reported

Reference List

Ajab, S., Pearson, E., Dumont, S., Mitchell, A., Kastelik, J., Balaji, P., & Hepburn, D. An alternative to traditional bedside teaching during COVID-19: High-fidelity simulation-based study. *JMIR Medical Education*. (2022); 8 (2): e33565. <u>https://doi.org/10.2196/33565</u>

Alegría, D. A. H., Boscardin, C., Poncelet, A., Mayfield, C., & Wamsley, M. Using tablets to support self-regulated learning in a longitudinal integrated clerkship. *Medical Education Online*. (2014); 19 (1): 23638. <u>https://doi.org/10.3402/meo.v19.23638</u>

Arksey, H., & O'Malley, L. Scoping studies: towards a methodological framework. *International Journal of Social Research Methodology*. (2005); 8(1): 19-32. https://doi.org/10.1080/1364557032000119616

Badowski, D., Rossler, K. L., & Reiland, N. Expploring student perceptions of virtual simulation versus traditional clinical and manikin-based simulation. *Journal of Professional Nursing*. (2021); 37: 683-689. <u>https://doi.org/10.1016/j.profnurs.2021.05.005</u>

Barisone, M., Bagnasco, A., Aleo, G., Catania, G., Bona, M., Scaglia, S. G., Zanini, M., Timmins, F., & Sasso, L. The effectiveness of web-based learning in supporting the development of nursing students' pratical skills during clinical placements: A qualitative study. *Nurse Education in Practice*. (2019); 37: 56-61. <u>https://doi.org/10.1016/j.nepr.2019.02.009</u>

Biggs, J. L., Sutherell, J. S., Remus, R., Armbrecht, E. S., & King, M. A. Positive outcomes of optimizing student-preceptor continuity in a traditional block clerkship. *Teaching and Learning in Medicine*. (2018); 30(2): 202-212. <u>https://doi.org/10.1080/10401334.2017.1412832</u>

Bittner, N. P., Campbell, E., & Gunning, T. Impact of a dedicated education unit experience on critical thinking development in nursing students. *Nurse Educator*. (2021); 46 (6): 386-388. <u>https://10.1097/NNE.000000000000966</u>

Boardman, G., Lawrence, K., & Polacsek, M. Undergraduate student nurses perspectives of an integrated clinical learning model in the mental health environment. *International Journal of Mental Health Nursing*. (2019); 28: 96-104. <u>https://doi.org/10.1111/inm.12496</u>

Bridge, P., Adeoye, J., Edge, C. N., Garmer, V. L., Humphreys, A., Ketterer, S., Linforth, J. G., Manning-Stanley, A. S., Newsham, D., Prescott, D., Pullan, S. J., & Sharp, J. Simulated placements as partial replacement of clinical training time: A Delphi consensus study. *Clinical Simulation in Nursing*. (2022); 68: 42-48. <u>https://doi.org/10.1016/j.ecns.2022.04.009</u> Brien, L., Charette, M., & Goudreau, J. Nursing students' perceptions of the contribution of high-fidelity simulation and clinical placement in a critical care course. *Clinical Simulation in Nursing*. (2017); 13: 436-441. <u>http://dx.doi.org/10.1016/j.ecns.2017.05.005</u>

Charak, G., Prigoff, J. G., Heneghan, S., Cooper, S., Weil, H., Nowygrod, R. Surgical education and the longitudinal model at the Colombia-Bassett program. *Journal of Surgical Education*. (2020); 77 (4): 854-858. <u>https://doi.org/10.1016/j-surg.2020.02.002</u>

Chong, S. J. K., Mortimer, L., Quick, C., West, L., & Khera, G. Implementation of education fellows on general surgery medical school rotations facilitate student learning and improves learning experience. *British Journal of Surgery*. (2021); 108(Suppl. 6): vi225.

Cipriano, S. D., Dybbro, E., Boscardin, C. K., Shinkai, K., & Berger, T. G. Online learning in dermatology clerkship: Piloting the new American Academy of Dermatology Medical Student Core Curriculum. *Journal of the American Academy of Dermatology*. (2013); 69: 267-272. https://doi.org/10.1016/j.jaad.2013.04.025

Claeys, M., Deplaecie, M., Vanderplancke, T., Delbaere, I., Myny, D., Beeckman, D., & Verhaeghe, S. The difference in learning culture and learning performance between a traditional clinical placement, a dedicated education unit and work-based learning. *Nurse Education Today*. (2015); 35: e70-e77. <u>http://dx.doi.org/10.1016/j.nedt.2015.06.016</u>

Clarke, E., Burns, J., Bruen, C., Crehan, M., Smyth, E., & Pawlikowska, T. The 'connectaholic'behind the curtain: medical student use of computer devices in the clinical setting and the influence of patients. *BMC Medical Education*. (2019); 19: 376. <u>https://doi.org/10.1186/s12909-019-1811-8</u>

Costello, M., Cantillon, P., Geoghegan, R., Byrne, D., Lowery, A., & Walsh, S. M. Experience-based learning: how a crisis solution informed fundemntal change in a clinical education curriculum. *The Clinical Teeacher*. (2022); 19: 42-47. <u>https://doi.org/10.1111/tct.13441</u>

Crawford, R., Jasonsmith, A., Leuchars, D., Naidu, A., Pool, L., Tosswill, L., Trezise, K., & Wordsmorth, A. "Feeling part of a team" a mixed method evaluation of a dedicated education unit pilot programme. *Nurse Education Today*. (2018); 68: 165-171. https://doi.org/10.1016/j.nedt.2018.05.023

De Ponti, R., Marazzato, J., Maresca, A. M., Rovera, F., Carcano, G., & Ferrario, M. M. Pregraduation medical training including virtual reality during COVID-19 pandemic: a report on students' perception. *BMC Medical Education*. (2020); 20: 332. <u>https://doi.org/10.1186/s12909-020-02245-8</u>

Edafe, O., Brooks, W. S., Laskar, S. N., Benjamin, M. W., & Chan, P. Impact of a novel teaching method based on feedback, activity, individuality and relevance on students' learning. *International Journal of Medical Education*. (2016); 7: 87-92. https://doi.org/105116/ijme.56e3.e7ab Feeley, A., Feeley, I., Carroll, A., & Hehir, D. J. Student acceptance of virtual bedside surgical tutorials during COVID-19: A randomized controlled trial. *Journal of Surgical Research*. (2022); 270: 261-265. <u>https://doi.org/10.1016/j.jss.2021.09.029</u>

Fielder, E. K., Lemke, D. S., Doughty, C. B., Hsu, D. C., & Middleman, A. B. Development and assessment of a pediatric emergency medicine simulation and skills rotation: meeting the demands of a large pediatric clerkship. *Medical Education Online*. (2015); 20 (1): 29618. https://dx.doi.org/10.3402/meo.v20.29618

Ford, K., Courtney-Pratt, H., Marlow, A., Cooper, J., Williams, D., & Mason, R. Quality clinical placements: The perspectives of undergraduate nursing studens and their supervising nurses. *Nurse Education Today*. (2016); 37: 97-102. <u>http://dx.doi.org/10.1016/j.nedt.2015.11.013</u>

Friedman, M. V., Demertzis, J. L., Hillen, T. J., Long, J. R., & Rubin, D. A. Impact of an interactive diagnostic case simulator on a medical student radiologi rotation. *American Journal of Radiology*. (2017); 208: 1256-1261. <u>https://doi.org/10.2214/AJR.16.17537</u>

Goolsby, C. A., Goodwin, T. L., & Vest, R. M. Hybrid simulation improves medical student procedural confidence during EM clerkship. *Military Medicine*. (2014); 179 (11): 1223-1227. https://doi.org/10.7205/MILMED-D-14-00072

Greenstone, H., & Wooding, K. "It's real life, isn't it?" Integrating simulation teaching in undergraduate psychiatry education – a qualitative study. *The Journal of Mental Health Training, Education and Pratice*. (2021); 16 (5): 341-352. <u>https://doi.org/10.1108/JMHTEP-09-2020-0067</u>

Hamra, T. R. A mixed methods study comparing nursing preceptored clinical learning experiences and nursing simulation clinical learning experiences of nursing students in a Midwest community college. (2019). Thesis.

Hannon, P. O., Hunt, C. A., Haleem, D., King, L., Day, L., & Casals, P. Implication of a dedicated education unit for baccalaureate students: process and evaluation. *International Journal of Nursing Education*. (2012); 4(2): 155-159.

Hart, T., Bird, D., & Farmer, R. Using blackboard collaborate, a digital web conference tool, to support nursing students placement learning: A pilot study exploring its impact. *Nurse Education in Practice*. (2019); 38: 72-78. <u>https://doi.org/10.1016/j.nepr.2019.05.009</u>

Hauer, K. E., Hirsh, D., Ma, I., Hansen, L., Ogur, B., Poncelet, A. N., Alexander, E. K., & O'Brien, B. C. The role of role: learning in the longitudinal integrated and traditional block clerkships. *Medical Education*. (2012); 46: 698-710. <u>https://doi.org/10.1111/j.1365-2923.2012.04285.x</u>

Hayden, J. K., Smiley, R. A., Alexander, M., Kardong-Edgren, S., & Jeffries, P. The NCSBN National simulation study: A longitudinal, randomized, controlles study replacing clinical hours with simulation in prelicensure nursing education. *Journal of Nursing Regulation*. (2014); 5(2): S3-S40.

Hendricks, S., DeMeester, D., Stephenson, E., Welch, J. Stakeholder perceptions, learning opportunities, and student outcomes in three clinical learning models. *Journal of Nursing Education*. (2016); 55 (5): 271-277. <u>https://doi.org/10.3928/01484834-20160414-06</u>

Ingleson, H., & Hunter, A. Maintaining clinical placements for child nursing students during the COVID-19 pandemic. *British Journal of Child Health*. (2022); 3 (1): 15-21.

Jauregui, J., Bright, S., Strote, J., & Shandro, J. A novel approach to medical student peer-assisted learning through case-based simulations. *Western Journal of Emergency Medicine*. (2018); 19 (1): 193-197. <u>https://doi.org/10.5811/westjem.2017.10.35319</u>

Khasawneh, R., Simonsen, K., Snowden, J., Higgins, J., & Beck, G. The effectiveness of e-learning in pediatric medical student education. *Medical Education Online*. (2016); 21 (1): 29516. <u>https://doi.org/10.3402/meo.v21.29516</u>

Kim, S., Willet, L. R., Pan, W. J., Afran, J., Walker, J. A., & Shea, J. A. Impact of required versus selfdirected use of virtual patient cases on clerkship performance: A mixed methods study. *Academic Medicine*. (2018); 93 (5): 742-749. <u>https://doi.org/10.1097/ACM.00000000001961</u>

Kwan, B., Bui, G., Jain, P., Shah, N., & Juang, D. Exploring simulation in the internal medicine clerkship. *The Clinical Teacher*. (2017); 14: 349-355. <u>https://doi.org/10.1111/tct.12577</u>

Leighton, K., Kardon-Edgren, S., Schneidereith, T., & Foisy-Doll, C. Meeting undergraduate nursing students' clinical needs. A comparison of traditional clinical, face-to-face simulation, and screenbased simulation learning environments. *Nurse Educator*. (2021); 46 (6): 349-354. <u>https://doi.org/NNE.000000000001064</u>

Lindeman, B. M., Law, J. K., Lipsett, P. A., Arbella, T., Stem, M., & Lidor, A. O. A blended online curriculum in the basic surgery clerkship: a pilot study. *The American Journal of Surgery*. (2015); 209: 145-151. <u>http://dx.doi.org/10.1016/j.amjsurg.2014.10.003</u>

Löfmark, A., Thorkildsen, K., Råholm, M., & Natvig, G. K. Nursing students' satisfaction with supervision from preceptors and teachers during clinical pratice. *Nurse Education in Practice*. (2012); 12: 164-169. <u>https://doi.org/10.1016/j.nepr.2011.12.005</u>

McLeod, C., Jokwiro, Y., Gong, Y., Irvine, S., & Edvardsson, K. Undergraduate nursing student and preceptors' experiences of clinical placement through an innovative clinical school supervision model. *Nurse Education in Practice*. (2021); 51: 102986. <u>https://doi.org/10.1016/j.nepr.2021.102986</u>

Mill, T., Parikh, S., Allen, A., Dart, G., Lee, D., Richardson, C., Howell, K., & Lewington, A. Live streaming ward rounds using wearable technology to teach medical students: a pilot study. *BMJ Simulation and Technology Enhanced Learning*. (2021); 7: 494-500. https://doi.org/10.1136/bmjstel-2021-000864

Mollo, E. A., Reinke, C. E., Nelson, C., Holena, D. N., Kann, B., Williams, N., Bleier, J., & Kelz, R. The simulated ward: Ideal for training clinical clerks in an era of patient safety. *Journal of Surgical Research*. (2012); 177: e1-e6. <u>https://doi.org/10.1016/j.jss.2012.03.050</u>

Mookerji, N., El-Haddad, J., Vo, T. X., Grose, E., Seabrook, C., Lam, B., Feibel, R., Bennett, S. Evaluating the efficacy of self-study videos for the surgery clerkship rotatin: an innovative project

in undergraduate surgical education. *Canadian Journal of Surgery.* (2021); 64 (4): e428-e434. https://doi.org/10.1503/cjs.019019

Morphet, J., Hood, K., Cant, R., Baulch, J., Gilbee, A., & Sandry, K. Teaching teamwork: an evaluation of an interprofessional training ward placement for health care students. *Advances in Medical Education and Practice*. (2014); 5: 197-204. <u>http://dx.doi.org/10.2147/AMEP.S61189</u>

Mulcock, P. M., Grassley, J., Davis, M., & White, K. Beyond the dedicated education unit: Using cognitive load theory to guide clinical placement. *Journal of Nursing Education*. (2017); 56 (2): 105-109. <u>https://doi.org/10.3928./01484834-20170123-07</u>

Munn, Z., Peters, M. D. J., Stern, C., Tufanaru, C., McArthur, A., & Aromataris, E. Guidance for authors when choosing between a systematic or scoping review approach. *BMC Medical Research Methodology*. (2018); 18: 143. <u>https://doi.org/10.1186/s12874-018-0611-x</u>

Nash, R., & Harvey, T. Student nurse perceptions regarding learning transfer following high-fidelity simulation. *Clinical Simulation in Nursing*. (2017); 13: 471-477. <u>http://dx.doi.org/10.1016/j.ecns.2017.05.010</u>

Newton, J. N., Jolly, B. C., Ockerby, C. M., & Cross, W. M. Student centredness in clinical learning: the influence of the clinical teacher. *Journal of Advanced Nursing*. (2012); 68 (10): 2331-2340. https://10.1111/j.1365-2648.2012.05946.x

Oldenburg, N. L., Maney, C., & Plonczynski, D. J. Traditional clinical versus simulation in 1st semester clinical students: Students perceptions after 2nd semester clinical rotation. *Clinical Simulation in Nursing*. (2013); 9 (7): e235-e241. <u>https://doi.org/j.ecns.2012.03.006</u>

Parker, B. A., & Grech, C. Authentic practice environments to support undergraduate nursing students' readiness for hospital placements. A new model of practice in an on campus simulated hospital and health service. *Nurse Education in Practice*. (2018); 33: 47-54. https://doi.org/10.1016/j.nepr.2018.08.012

Patterson, C., Collins, K., & Hunter, I. Comparing medical student experience of face-to-face and remote access consultations during the coronavirus pandemic. *Journal of Telemedicine and Telecare*. (2022); published online. <u>https://doi.org/10.1177/1357633X221103828</u>

Pépin, C., Aita, M., Lavallée, A., & Goudrau, J. Comparative study of knowledge acquisition, satisfaction, self-confidence and perceived support in nursing students experiencing simulation versus clinical placement in perinatal care. *Quality Advancement in Nursing Education*. (2022); 8 (1): Article 3. <u>https://doi.org/10.17483/2368-6669.1295</u>

Reames, B. N., Sheetz, K. H., Englesbe, M. J., & Waits, S. A. Evaluating the use of Twitter to enhance the educational experience of a medical school surgery clerkship. *Journal of Surgical Education*. (2016); 73 (1): 73-78. <u>http://dx.doi.org/10.1016/j.surg.2015.08.005</u>

Redinger, K. E., & Greene, J. D. Virtual emergency medicine clerkship curriculum during the COVID-19 pandemic: Development, application, and outcomes. *Western Journal of Emergency Medicine*. (2021); 22 (3): 792-798. <u>https://doi.org/10.5811/westjem.2021.2.48430</u> Rohatinsky, N., Chachula, K., Compton, R. M., Sedgwick, M., Press, M. M., & Lane, B. Nursing student preference for block versus nonblack clinical models. *Journal of Nursing Education*. (2017); 56 (3): 152-157. <u>https://doi.org/10.3928/01484834-20170222-06</u>

Safdieh, J. E., Lee, J. I., Prasad, L., Mulcare, M. Eiss, B., & Kang, Y. Curricular response to COVID-19: real-time interactive telehealth experience (RITE) program. *Medical Education Online*. (2021): 26 (1): 1918609. <u>https://doi.org/10.1080/10872981.2021.1918609</u>

Sanseau, E., Lavoie, M., Tay, K., Good, G., Tsao, S., Burns, R., Thomas, A., Heckle, T., Wilson, M., Kou, M., Auerbach, M. TeleSimBox: A perceived effective alternative for experiential learning for medical student education with social distancing requirements. *AEM Education and Training*. (2021); 5: e10590. <u>https://doi.org/10.1002/aet2.10590</u>

Shahi, R., Walters, L., Ward, H., Woodman, R. J., & Prideaux, D. Clinical participation of medical students in three contemporary training models. *Medical Education*. (2015); 49: 1219-1228. <u>https://doi.org/10.1111/medu.12815</u>

Simpkin, A, McKeown, A., Parekh, R., Kumar, S., & Tudor-Williams, G. Identifying central tenets needed in our education systems: results from a pilot integrated clinical apprenticeship. *Medical Teacher*. (2019); 41 (7): 780-786. <u>https://doi.org/10.1080/0142159X.2019.1578874</u>

Stenberg, M., & Carlson, E. Swedish student nurses' perception of peer learning as an educational model during clinical practice in a hospital setting – an evaluation study. *BMC Nursing*. (2015); 14: 48. <u>https://doi.org/10.1186/s12912-015-0098-2</u>

Subramanian, A., & Vafa, S. The introduction of digital game-based learning in a surgical clerkship: A pilot study. *Medical Science Educator*. (2013); 23 (3): 329-335.

Sutkin, G., & Dzialowski, K. A gynaecologic clinic dedicated to student teaching. *The Clinical Teacher*. (2013); 10: 181-185. <u>https://doi.org/10.1111/j.1743-498X.2012.00633.x</u>

Teherani, A., Irby, D. M., & Loeser, H. Outcomes of different clerkship models: Longitudinal integrated, hybrid, and block. (2013); 88: 35-43. <u>https://doi.org/10.1097/ACM.0b013e318276ca9b</u>

Tofil, N. M., Vankineni, K., Niebauer, J., Zinkan, J. L., Youngblood, Am Q., Harrington, K., Peterson, D. T., & White, M. L. High-fidelity simulation enhances learning during a third year medical student pediatric clerkship. *Medical Science Educator*. (2013); 23 (3); 313-320.

Tofil, N. M., Morris, J. L., Peterson, D. T., Watts, P., Epps, C., Harrington, K. F., Leon, K., Pierce, C., & White, M. L. Interprofessional simulation training improves knowledge and teamwork in nursing and medical students during internal medicine clerkship. *Journal of Hospital Medicine*. (2014); 9 (3): 189-192. <u>https://doi.org/10.1002/jhm.2126</u>

Topor, L., Balser, D., Bruhnding, P., Dvorak, J., Anderson, C., Tanguay, B., Seidel, E., Tonkin, B., & Senk, A. How to one up a pandemic. University of Minnesota's physical medicine and rehabilitation virtual clerkship – A model for alternative clinical training and preliminary validation study. *American Journal of Physical Medicine & Rehabilitation*. (2021); 100: 1100-1104. https://doi.org/10.1097/PHM.00000000001688 Tran, S., Lucka, K., & Cox, S. Introduction of as consistent clinical tutor in undergraduate clinical placement during COVID-19 pandemic: A qualitative survey among students and tutors. *Archives of Diseases in Childhood*. (2021); 106(Suppl 1): A28.

Veltri, L. M., Rowe, J. M., Bell, K. J., Arwood, E. L., & Kindler, L. The maternal-newborn assessment study: Can simulation replicate the clinical learning experience in undergraduate nursing education? *Journal of Obstetric, Gynecologic & Neonatal Nursing*. (2014); Supp 1: S84-S84.

Villa, S., Janeway, H., Preston-Suni, K., Vuong, A., Calles, I., Murphy, J., James, T., Jordan, J., Grock, A., & Wheaton, N. An emergency medicine virtual clerkship: Made for COVID, here to stay. *Western Journal of Emergency Medicine*. (2022); 23 (1): 33-39. <u>https://doi.org/10.5811/westjem.2021.11.54118</u>

Watt, E., Murphy, M, MacDonald, L, Pascoe, E., Storen, H., & Scanlon, A. An evaluation of a structured learning program as a component of the clinical practicum in undergraduate nurse education: A repeated measures analysis. *Nurse Education Today*. (2016); 36: 172-177. http://dx.doi.org/10.1016/j.nedt.2015.09.008

Williams, J., Murphy, M., & Garrow, A. Development of a simulation placement in a preregistration nursing programme. *British Journal of Nursing*. (2022); 31 (10): 549-554.

Wise, E. M., McIvor, W. R., & Mangione, M. P. Assessing student usage, perception, and the utility of a Web-based simulation in a third-year medical school clerkship. *Journal of Clinical Anesthesia*. (2016); 33: 5-13. <u>http://dx.doi.org/10.1016/j.clinane.2016.01.006</u>

Xiong, W., Singht, S., Wilson-Delfosse, A., Jones, R., Nielsen, C., Chalkley, C., & Logio, L. "Flipped" clinical rotations: A novel approach. *The Clinical Teacher*. (2022); 19: e13520. https://doi.org/10.1111/tct.13520